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Abstract—Despite advances in deep learning for remote sens-
ing building extraction (RSBE), multitarget domain RSBE
(MD-RSBE) remains challenging, as it requires transferring
knowledge from a labeled source domain to multiple unlabeled
target domains, with domain shifts in texture, style, and seman-
tics. Existing domain adaptation (DA) and generalization (DG)
methods face significant limitations: DA requires target-domain
training, while DG needs multisource training, leading to high
training costs and low generalization in practical MD-RSBE
scenarios. To address this, we propose a multiview augmented
single-source DG (MASDG) method, which effectively mitigates
domain shifts across the RS source and target domains for
robust MD-RSBE performance by enriching the diversity of the
source domain through multiview augmentation and enforcing
semantic consistency. Specifically, MASDG consists of three key
components: texture-level domain augmentation (TDA) module,
style-level domain augmentation (SDA) module, and semantic-
invariant representation learning (SRL). To mitigate texture-level
domain shift, TDA first introduces parameter-optimized multi-
layer random convolution to modify the texture of the source
image, generating texture-augmented image pairs for simulating
real-world texture diversity across various RS domains. Then,
with each image pair from TDA, SDA employs two paralleled
encoders, namely, the general feature encoder and the batch-
guided style encoder, to formulate multiview building features,
further mitigating style-level domain shift. Finally, SRL ensures
SRL via a dual mechanism, including multiview segmentation loss
and semantic consistency loss. The former generates predictions
from diverse feature views (original, texture-augmented, and
style-augmented), while the latter performs semantic alignment
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by minimizing distribution discrepancies among predictions,
bridging semantic inconsistency to enable robust segmenta-
tion. Extensive experiments across three different MD-RSBE
settings with seven different target domains demonstrate that
our MASDG outperforms existing state-of-the-art methods by a
significant margin.

Index Terms—Multiview semantic consistency, remote sensing
building extraction (RSBE), single-source domain generalization
(DG), style augmentation, texture augmentation.

I. INTRODUCTION

EMOTE sensing building extraction (RSBE) involves

identifying building regions in images by assigning a
class label to each pixel, playing a vital role in urban planning,
natural resource protection, land resource monitoring, and so
on [1], [2], [3]. Although deep learning-based algorithms have
significantly advanced RSBE, they face two major limitations.
First, these models require a large amount of densely annotated
training data, which is both time-consuming and costly to
obtain. Second, in complex real-world scenarios, deep learning
models suffer from domain shift, namely, significant discrep-
ancies in texture, style and semantics between the training
data (source domain) and the testing data (target domain) in
RSBE, e.g., imaging mechanisms (optical and SAR), sensors
(spectrum and resolution), environments (illumination and
climate), and locations (urban and rural areas) [4], [5], [6].
To address these challenges, we focus on a more practical
task setting, namely, multitarget domain RSBE (MD-RSBE).
In this setting, the model is trained on a single labeled
source domain and is expected to generalize to multiple
unseen and unlabeled target domains. This setup better reflects
real-world RSBE applications, where diverse environmental
conditions and imaging variations make generalizing models
across domains a pressing challenge.

To mitigate the above-mentioned domain shift problem
in MD-RSBE, domain adaptation (DA) [4], [7], [8] and
domain generalization (DG) [9], [10], [11] methods have been
developed. DA methods align the data distribution between
different domains, exploring better generalization of features
learned in the source domain to the target domain, as shown
in Fig. 1(a). For instance, BDL [7] employs image-level
alignment by introducing bidirectional learning to facilitate
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Fig. 1. Comparison of three ways to solve the domain shift problem in MD-RSBE, where GT denotes the GT, Pred. denotes the prediction of each method.
(a) DA methods rely on a specific target domain to learn a target-adapted model, struggling to generalize to multiple target domains and requiring a high
training cost. (b) DG methods utilize multiple source domains to learn domain-invariant features, requiring an extremely high data collection budget and high
training cost. (c) Our MASDG method proposes multiview augmentation and learns semantic-invariant features only on a single-source domain, enabling the
model to generalize to multiple target domains with low training cost and extensive generalization.

the reciprocal enhancement of the image translation model
and segmentation model. FSDAN [8] aligns source and target
images at the image, feature, and output-level through a two-
stage adversarial learning based on a generative adversarial
network. Despite progress, DA still requires access to specific
unlabeled target domain data during training to learn a target-
adapted model. As a result, the model must be retrained
for each new target domain, exposing high training cost and
limiting its generalization capability in multitarget domains.

Compared to DA, DG is independent of target domains,
but requires multiple labeled source domains for training to
learn domain-invariant representations, as shown in Fig. 1(b).
Li et al. [9] learn universal feature representations by aligning
the distributions of multiple source domains to generalize on
target domains. L2A-OT [11] introduces a data generator to
synthesize pseudo domains with distributions different from all
source domains to further enhance the diversity of available
training data. Despite the progress in multitarget domain shift,
DG methods with multiple labeled source domains for training
are very costly and labor-intensive, especially for the RSBE.

More recently, due to high efficiency and low labor costs,
single-source DG (SDG) methods have been proposed in the
general computer vision field for natural images, aiming to
learn domain-invariant representations from a single labeled
source domain to multitarget domains [12], [13], [14]. For
example, RandConv [12] implements random convolution to
generate extra images with diverse textures to expand the
source domain, and incorporates the Kullback-Leibler diver-
gence to enforce semantics invariance under texture changes.
L2D [14] introduces a style-complement module to synthesize
samples with unseen styles, and enforces semantic-invariant
features by maximizing mutual information. Although these
methods make progress in addressing the multitarget domain
shift problem for general computer vision tasks, they still face
two significant challenges for more complex MD-RSBE as
follows.

1) Diverse Domain Shift in MD-RSBE: Remote sensing
(RS) images possess richer spectral, textural, and stylis-
tic characteristics, and include unique attributes not
present in natural images, resulting in the domain shift
arises from multiple factors, primarily the texture-level

and style-level domain shifts [6], [15]. However, existing
SDG methods typically employ single-view augmenta-
tion to address either texture-level or style-level domain
shift, fail to comprehensively cover these domain shifts,
affecting building extraction accuracy and restricting
generalization.

2) Augmentation-Induced Semantic Inconsistency in MD-
RSBE: Although the texture and style augmentations
can simulate extensive distributions of multiple unseen
RS target domains through domain expansion, they
may introduce noise features and distort the original
semantics, resulting in inconsistent outputs for the same
semantics category, known as semantic inconsistency.
In MD-RSBE, this semantic inconsistency can lead
to inaccuracies in building extraction, such as blurred
building boundaries and misclassifications of buildings
and nonbuildings, hindering the generalization to target
domains.

To address the challenges, we propose a novel multiview
augmented SDG (MASDG) method for robust MD-RSBE
performance. MASDG enhances source diversity through
multiview augmentation and learns semantic-invariant rep-
resentations to mitigate domain shifts across RS domains.
Specifically, MASDG consists of three main components:
the texture-level domain augmentation (TDA) module, the
style-level domain augmentation (SDA) module, and the
semantic-invariant representation learning (SRL). To mitigate
the texture-level domain shift, TDA utilizes the parameter-
optimized multilayer random convolution to modify the texture
of the source image for generating texture-augmented image
pairs. To further mitigate the style-level domain shift, SDA
employs a dual encoder structure, the general feature encoder
for standard feature extraction and the batch-guided style
encoder for feature stylization to generate diverse feature
views guided by batch-wise style variance. Finally, SRL
enforces semantic consistency across different feature views
by minimizing distribution differences among their predictions
using multiview segmentation loss and semantic consistency
loss.

In summary, our contributions are as follows.
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1) We propose MASDG method tailored for the MD-
RSBE task, which effectively transfers knowledge from
a single RS source domain to multiple unseen RS target
domains through multiview augmentation and semantic-
invariant building representation learning. To the best
of our knowledge, this is the first effective method for
MD-RSBE.

2) To address texture- and style-level domain shifts in
various RS domains, TDA and SDA are introduced to
diversify the source domain through multiview augmen-
tation. TDA generates texture-augmented image pairs
while SDA further performs feature stylization that
formulates multiview building features, simulating real-
world texture and style diversities.

3) To further bridge semantic inconsistency among mul-
tiview augmentation for semantic-invariant building
representation learning, SRL aligns multiview predic-
tions from different feature views by using multiview
segmentation loss and semantic consistency loss, thereby
enabling robust building extraction across unseen target
domains.

4) We conduct extensive experiments on three MD-RSBE
settings, including WHU—Others, SAB—Others, and
Crowd—0Others, where the model is trained with a single
RS source domain and evaluated on seven unseen RS
target domains. The results show that the proposed
MASDG outperforms existing SDG methods across all
seven different target domains, confirming the effective-
ness and generality of our proposed approach.

II. RELATED WORK
A. RS Building Extraction

In recent years, deep learning-based models have flourished
in RSBE due to their powerful feature extraction and nonlinear
modeling ability, broadly categorized into CNN-based and
hybrid transformer-based methods. CNNs excel at capturing
local contextual information. MAP-Net [16] utilizes channel
attention and pyramid pooling modules to fuse multiscale
features. MHA-Net [17] further designs a multipath hybrid
dilated convolution for enhanced multiscale building extrac-
tion. Refined-UNet [1] inherits the classic encoder—decoder
structure and incorporates a refined skip connection to
extract multiscale building features. CSA-UNet [18] integrates
channel-spatial attention into a classic encoder—decoder model
to capture discriminative RS building features. While these
CNN-based frameworks struggle to capture global context for
building extraction, transformers, with strong global modeling
capabilities, offer a promising solution. However, local details
remain crucial for building extraction. Hybrid transformer-
based methods integrate CNNs’ local feature extraction with
transformers’ global contextual modeling, notably advancing
building extraction. CMTFNet [19] utilizes multiscale trans-
former blocks to process multiscale features extracted from
CNN, further perform feature fusion for obtaining both local
and global contextual information. BCT-Net [20] proposes
a dual-branch framework combining both convolution and
transformer encoders to capture both local and global con-
texts. Despite the process, these methods often output blurred
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building boundaries due to occlusion and noise interference.
MSHFormer [21] addresses this by enhancing edge representa-
tions and suppressing background noise in low-level features.
Similarly, EGAFNet [22] passes the edge features extracted
from shallow layers to the decoder for supplementing building
boundary information. However, these methods focus on a
specific data source and struggle to generalize to out-of-
distribution target domains.

B. DA in RSBE

DA utilizes both the labeled source domain data and
the unlabeled target domain data during the training phase,
with the goal of developing a model that could general-
ize to the target domain. Several studies have explored the
application of DA to address the domain shift in building
extraction tasks. Na et al. [23] utilize adversarial attack
to generate target-like source domain images for achiev-
ing image-level alignment between the source and target
domains. Similarly, JRPNet [24] employs the CycleGAN to
modify the style of source domain images, obtaining the
target-like source images. FDANet [4] makes full use of
image-, feature-, and output-level information to adapt the
model from the source domain to the target domain. FDANet
employs the Wallis filter method to convert the source domain
images to target-like ones for image-level alignment, adopts
an adversarial learning module for feature-level alignment,
and utilizes the mean-teacher model to achieve consistency
regularization for output-level alignment. FLDA-NET [15]
also employs full-level alignment consisting of image-level
style transfer, feature-level entropy distribution minimiza-
tion, and output-level cotraining algorithm for category-level
alignment.

C. Domain Generalization

DG aims to train models on multiple source domains,
so that they can be generalized to unseen target domains
without having access to target data. Niu et al. [25] enhance
the DG by fusing multiple SVM classifiers. MVDG [26]
is a meta-learning-based DG method that employs multiple
optimization paths to determine the best direction for model
update. GTR-LTR [27] and WildNet [28] use external style
datasets (e.g., paintings and ImageNet) for image-level style
transfer. CCFP [29] introduces a learnable feature perturbation
module to diversify the style of features while enforcing
semantic consistency. Recently, there are also several DG
methods in the field of RS. BSM [30] diversifies the style of
the RS source domain images by randomly mixing the styles of
the samples within the same batch, thus mitigating the domain
shift in RSBE. FosMix [10] performs style randomization
in the frequency domain, consisting of the full mix that
integrates the style of the reference image into the RS source
image as much as possible, while the optimal mix retains
the frequencies crucial for segmentation and randomizes the
remaining frequencies. DGMaskRCNN [31] integrates the
domain adversarial modules at the image-, instance-, and pixel
level for domain-invariant feature learning, so that the model
trained on the RS source domain could generalize to unseen
target domains.
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D. Single-Source DG

SDG is a more challenging and practical setting where the
model is trained on a single-source domain and tested on
multiple unseen target domains. With limited data diversity,
most SDG methods rely on data augmentation to enhance
variability and improve generalization. RandConv [12] applies
random convolutions to source images, altering textures while
preserving shapes, to generate diverse samples for domain
expansion. PDEN [32] generates additional images with dif-
ferent styles and textures in a progressive manner to expand
the source domain. UDP [33] uses information theory metrics
to minimize the correlation between original images and aug-
mented ones, improving the diversity of augmented images.
Despite prosperity in the field of natural images, SDG remains
underexplored in RS. In the hyperspectral cross-scene classi-
fication tasks, Wang et al. [34] employ the encoder—decoder
framework to divide the features into variant and invariant
features, and generate new samples to expand the source
domain by perturbing the variant features. TSDANet [35]
utilizes the generative adversarial network to generate expand
the diversity of the source domain, and introduces a spectral
learning branch to eliminate the effect of noise on sample
generation. In the RS semantic segmentation task, CCDR [6]
randomly transforms the texture and style of the RS source
image to generate additional images for domain expansion,
thus facilitating the domain-invariant features. However, SDG
receives little attention in RSBE.

III. PROPOSED APPROACH
A. Problem Definition

The MD-RSBE is formulated as follows: given a single
labeled RS source domain S = {(x;,y)li = 1,...,n5},
where x; € RXW>3 is an RS image in the source domain,
yi € REXWXNe is its corresponding semantic label, i indexes
the examples in S, N, represents the number of semantic
categories, ng represents the size of S, and the multiple
unlabeled RS target domains 77" = {(x’j’.1)| j=1,...,n}}, where
j indexes over the examples in the mth target domain 7",
and n7 represents the size of T™. It is worth noting that the
source domain S and each target domain 7™ share the same
semantic categories, but exhibit different data distributions.
The goal of MD-RSBE is to train a model using the single
labeled source domain S, enabling the model to accurately
identify buildings in new, unseen RS images from each target
domain 7™. However, the domain shift from texture, style,
and semantic disparities poses a significant challenge for
MD-RSBE to transfer knowledge learned from the single-
source domain to multiple unseen target domains.

B. Model Overview

We propose the MASDG framework for MD-RSBE, which
transfers knowledge from a single labeled source domain
to multiple unlabeled target domains. The MASDG consists
of three key components, namely, the TDA module, the
SDA module, and the SRL. First, given a source image,
TDA applies parameter-optimized multilayer random convo-
lution to generate texture-augmented variants, addressing the
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texture-level domain shift. Then, SDA takes both original and
texture-augmented images as input and uses dual encoders—a
general encoder for standard features and a batch-guided
style encoder for style-augmented features—to produce mul-
tiview representations, mitigating the style-level domain shift.
Finally, SRL promotes semantic-invariant learning via a dual
mechanism: a multiview segmentation loss for diverse feature
predictions and a semantic consistency loss for aligning their
distributions. By integrating TDA, SDA, and SRL, MASDG
effectively addresses texture-level and style-level domain shifts
across RS domains and learns semantic-invariant building
representations, enabling more effective knowledge transfer
from a single source to multiple unseen target domains.
Sections III-C-III-E detail the proposed TDA, SDA, and SRL.

C. TDA Module

The texture-level domain shift caused by the variations of
material, density, and geographical location is one of the main
factors for domain shift between different RS domains, making
it challenging to generalize the RSBE model to multiple
unseen target domains [6], [15]. To mitigate the texture-
level domain shift, we propose the TDA module to perform
stochastic texture transformation at the image level, generating
rich texture-augmented images to simulate real-world texture
diversity.

As shown in Fig. 2, given an input image from the
source domain x; € S, the TDA module introduces the
parameter-optimized multilayer random convolution to con-
stantly generate the texture-augmented image x; during
training, which presents different textures compared to the
original source image x;, thereby increasing the texture diver-
sity of source domain data. Specifically, the TDA is a two-step
process, the first step aims to perform parameter optimization
to diversify the texture transformation parameters, obtaining
the optimal parameter setting for current texture augmentation,
ensuring even parameter space exploration, and enhancing
the diversity of texture-augmented images. The second step
utilizes the selected texture transformation parameters obtained
from the first step, aiming to perform texture modification for
the source input image through multilayer random convolution
following RandConv [12].

1) Step 1: Parameter Optimization: To ensure the vari-
ability of texture-augmented images, we first introduce a
parameter optimization strategy that diversifies the combina-
tions of texture transformation parameters for each iteration.
The texture transformation parameters consist of the num-
ber of random convolution layers M, the kernel size k,
and the mixing ratio @. By varying the combinations of
M, k, and «, the generated images will exhibit different
textures. Following [12], we constrain the value range of
each texture transformation parameter, where M is sampled
from M € {1,2,..., Mypper} (Mupper = 4, denoted the upper
bound of M), k is sampled from {1,3,5,7} and « is sam-
pled from [0, 1]. To ensure comprehensive parameter space
exploration and obtain the optimal parameter setting for each
iteration, we introduce a parameter memory to store the texture
transformation parameters M, k, and « used by previous
iterations, which are managed through three parameter queues
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Fig. 2. Overview of the proposed MASDG. Given x; € S, TDA adopts parameter-optimized multilayer random convolution for texture augmentation, generating
the texture-augmented image x; with different textures compared to the original source image x!. Then, with the x; and x;, SDA employs dual paralleled
encoders to obtain multiview building features, where the general feature encoder performs standard feature extraction to generate F; and F;, the batch-guided
style encoder employs the BST to perform feature stylization, producing the style-augmented £; and F' 7. Finally, MSL adopts the multiview segmentation loss
Linseg to generate a prediction for each feature view, obtaining pred;, pred;, prédi, préd,'- , and employs the Lcons for final semantics-consistent prediction.

Owm, Ok, and Q, with length of len, respectively. Then, we
count the occurrences of values in the parameter queues
Oy, Ok, and Q,, and identify parameters with the lowest
usage frequency within their respective value ranges, which
helps to evenly explore the parameter space and avoid over-
reliance on frequently used parameter combinations, thereby
enhancing the diversity of generated texture-augmented
images.

2) Step 2: Texture Modification: After acquiring the texture
transformation parameters M, k, and « for current iteration,
we utilize the multilayer random convolution to modify the
texture of source image x; in a progressive manner, where the
number of random convolution layers is M, the kernel size of
each random convolution layer is k. We initialize the weight
of Ith random convolution layer by randomly sampling from a
Gaussian distribution N0, (1/3k%)), where [ € {1,2,3,..., M}.
The convolution operation for each layer can be represented
as

x;z) — 0¥ & xl('l—l)

(D
where xEH) is the input to the /th random convolution layer,
@ is the weight of the /th random convolution layer ini-
tialized from A/(0,(1/3k%)), and * is convolution operation.
Finally, the output of Mth layer x¥ is further mixed with the
original source image x; through a linear combination at the
ratio of a, obtaining the texture-augmented image x;, which
is formulated as
xlfzaxi—&—(l—a)x?/[. 2)
Based on the above parameter-optimized multilayer random
convolution operation, we can constantly obtain the texture-
augmented image x; with different random local textures
compared to the original source image x' during training
iterations, thus imitating the real-world texture diversity and
addressing the texture-level domain shift within different RS
domains.

D. SDA Module

While TDA addresses texture-level domain shift, the style-
level shift caused by lighting, sensors, and environmental
factors remains a key challenge. To mitigate this, the SDA
module enriches style diversity by using the original source
image x; and its texture-augmented image x; from TDA.
SDA employs two parallel encoders, which includes a general
feature encoder (G-encoder) for standard feature extraction
and a batch-guided style encoder (S-encoder) for generat-
ing style-augmented features, producing multiview building
representations.

1) General Feature Encoder (G-Encoder): Taking each
image pair x; and x; from TDA as input, the general feature
encoder aims to perform standard feature extraction layer by
layer, obtaining the F; and F;, which is formulated as

F; = G-encoder (x;), F; = G-encoder (x;) . 3)

2) Batch-Guided Style Encoder (S-Encoder): The
S-encoder processes the image pair x; and x; in parallel
with the general feature encoder, generating style-augmented
features F; and F{, to simulate real-world style diversity
during training. The formulation of the S-encoder is as
follows:

“4)

Specifically, in the S-encoder, we introduce a batch-guided
style transformation (BST) strategy in intermediate layers
(7th, 11th, 15th, and 23rd) of the backbone used in [36], to
diversify the style of the output features of these layers by
utilizing batch-wise style variance, as depicted in Algorithm 1.
Given x; or x; as input, we first obtain the output feature from
one of these intermediate layers as F;. Then, we compute
the feature statistics of F, obtaining the feature mean
and the feature standard deviation o, representing the style
of F,. Since the target domain is unknown in real-world
scenarios, there is inherent uncertainty regarding the style-
level domain shift between the RS source and target domains.

F; = S-encoder (x;), ﬁf = S-encoder (x;) .
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Algorithm 1 BST

Input: Output features F; from intermediate layers (7th, 11th,
15th, and 23rd) of the backbone
Output: Style-augmented features F'

1. Initialize: uy,u,,...,up and oy,07,...,0, represent the
mean and standard deviation of the features within the
same batch as F';, where b denotes the batch size.

2: Compute feature mean of F:

us = Mean(Fy)
3: Compute feature standard deviation of Fj:

o5 = Std(Fy)
4: Multivariate Gaussian distribution assumption:
#S ~ N (l'l_w EZ)

O~ N(O—m Zg—)
5: Approximate X and X2 using variance of each feature
statistics within the same batch:
2 = Var(ui, o, o) s € [, 5]
Ef, =Var(o1,03,...,0p), 05 € [01,...,0]
6: Sample new feature mean:
fs — Ny 2)
7: Sample new feature standard deviation:
Oy N(o-x’ E?r)
8: Apply f1; and & to obtain Fi:

N Fy—
Fs:O-S sTHs

Oy

) + s
9: return Fs

As a result, it is infeasible to determine the direction and
magnitude of changes in feature statistics. To model uncertain
style-level domain shifts, we assume feature statistics follow
multivariate Gaussian distributions: p; ~ A (/“5’2121) and o ~
N (o, 25_), where means represent original stats and variances
capture potential deviations. Following MixPatch [37], we
utilize the variance of feature means and feature standard
deviations within the same batch to approximate the Eﬁ and
XZ. After acquiring the X2 and X2, we construct Gaussian
distributions and sample new statistics as, iy ~ N (/JS,Zi)
and 65 ~ N (o-s,E(Z,). Next, we replace the original feature
statistics of F; with the sampled feature statistics following
AdaIN [38], obtaining the style-augmented feature F. The
BST is formulated as follows:

A Fs_ s A
=&, (—”) + A )

[

Finally, the ¥ is propagated through transformer layers, alter-
nating feature extraction and BST-based style transformation,
yielding the final style-augmented features F; and F 7 for x;
and x;, respectively.

Overall, the parallel G-encoder and S-encoder in SDA
generate multiview features—original (F;, F;) and style-
augmented (F;, F 7)—to simulate real-world style diversity and
mitigate style-level domain shift between RS source and target
domains.

E. Semantics-Invariant Representation Learning

The multiview building features F;, F7, F i, and F ! from
TDA and SDA enhance texture and style diversity. However,
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Fig. 3. Mechanism of the Lpns for semantic alignment in SRL. The
Leons promotes consistency by averaging multiview predictions (pred,,,), and
pulling each prediction toward this average for semantics-consistent outputs.

augmentations may introduce noise features and distort the
original semantics, affecting generalization. To address this,
SRL ensures semantic-invariant learning using multiview seg-
mentation loss for predictions and a semantic consistency
loss to align predictions, bridging semantic inconsistencies for
robust building extraction.

1) Multiview Segmentation Loss: Using the multiview
building features F;, F}, F;, and F 7, we devise the multiview
segmentation loss with the segmentation head, to generate
multiview predictions as pred;, pred;, prédi, prédg . The multi-
view segmentation loss L, encompasses four distinct basic
segmentation loss functions, each corresponding to a feature
view. For each feature view, the basic segmentation loss L is
composed of the standard cross-entropy loss L., the binary
cross-entropy loss Ly, and the dice loss Lgice, following
Mask2Former [39]. Formally, the Ly, and £ are formulated
as

L= /lceﬁce + Abce‘cbce + /ldiceﬁdice (6)
Emseg = L (prediv yi) + ‘C (Predl/" yi)
+ L (pred;, y;) + £ (préd,’, yi) (7)

where the Agice, Adice, and Agice denotes the weights of each
loss, and y' denotes the ground truth (GT) of the original
source input image x'. Here, we set Agice = 2, Adgice = 5 and
Adice = 5 according to [39].

2) Semantic Consistency Loss: Intuitively, the RSBE
model, which is robust against domain shift, should produce
semantics-consistent predictions for the same semantic cat-
egory, regardless of variations in texture and style. In this
point of view, SRL further incorporates a semantic consistency
loss that employed Jensen—Shannon (JS) divergence [40] to
minimize the discrepancy among these multiview predictions,
achieving semantic alignment of these predictions and finally
obtaining the semantics-consistent prediction, as depicted in
Fig. 3. More concretely, we first calculate the mean of the
multiview predictions, denoted by pred,,,. Subsequently, we
calculate the JS divergence between each prediction and the
mean, and accumulate all of the obtained JS divergences to
obtain the final semantic consistency loss L.y, which is
defined as follows:

1 . ~
pred; + pred; + pred; + pred!) ¥

pred,,, = 4_1(
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TABLE I
DOMAIN GAPS BETWEEN DIFFERENT RS DATASETS

Dataset Spatial Resolution (m) Image Resolution (pixels) Shooting Area Filming Angle
SAB 0.290 500 x 500 Beijing, Shanghai, Shenzhen, Wuhan Orthographic, non-orthographic
WHU 0.075 512 x 512 Christchurch(New Zealand) Orthographic
Crowd 0.300 300 x 300 Las Vegas, Paris, Shanghai, Khartum Orthographic
UBC 0.5~0.8 600 x 600 Beijing, Munich Orthographic
Potsdam 0.05 512 x 512 Potsdam (Germany) Orthographic
Vaihingen 0.09 512 x 512 Vaihingen (Germany) Orthographic
Massachusetts 1 500 x 500 Boston(USA) Orthographic
Inria 0.03 512 x 512 Austin, Chicago, Kitsap County, Western Tyrol, Vienna Orthographic

Leons =T S(predavg,
+ JS(pred

pred;) + JS(pred,,, pred;)

pred;) + JS(pred )

3) Overall Objective Function: The overall loss function
Liotal is composed by the multiview segmentation 108 Liygeq
and the semantic consistency loss Lc,s. These losses work
synergistically for domain-invariant building feature learning
to mitigate the RS domain shift involving the texture, style, and
semantic disparities, enabling the RSBE model to generalize
to multiple unseen target domains. The Ly, is defined as

(10)

- ’
avg? avg? predi)'

Liotal = Lmseg + wLcons

where w denotes the weighting factor of the semantic con-
sistency loss. In our experiments, w is set to 1.0. More
detailed discussions about the weight of L., can be seen in
Section IV-E.

IV. EXPERIMENTS
A. Datasets

To evaluate our proposed approach, eight RS building
datasets were used: Chinese Typical Urban Building Instance
Dataset (SAB) [41], WHU Aerial Image Dataset (WHU)
[42], CrowdAl Mapping Challenge Dataset (Crowd) [43],
UBC Satellite Image Dataset (UBC) [44], ISPRS Potsdam
Dataset (Potsdam) [45], ISPRS Vaihingen Dataset (Vaihingen)
[46], Massachusetts building dataset (Massachusetts) [47],
and Inria Aerial Image Labeling Dataset (Inria) [48]. The
more detailed information about the eight datasets was shown
in Table I.

1) Chinese Typical Urban Building Instance Dataset [41]:
The Chinese Typical Urban Building Instance Dataset (here-
inafter referred to as SAB) is captured from Beijing, Shanghai,
Shenzhen, and Wuhan. There are 7260 images, with a total of
63 886 buildings in SAB. Among them, 5985 images are used
for training, and 1275 images are used for testing. Each RS
image in SAB has dimensions of 500 x 500 pixels and a spatial
resolution of 0.29 m.

2) Whu Aerial Image Dataset [42]: The WHU Aerial
Image Dataset (hereinafter referred to as WHU) is captured
from Christchurch, New Zealand. Each image has dimensions
of 512 x 512 pixels, and the spatial resolution is 0.075 m. The
training set contains 4736 images, and the test set contains
2416 images.

3) CrowdAl Mapping Challenge Dataset [43]: The Crow-
dAI Mapping Challenge Dataset (hereinafter referred to as
Crowd) is captured from multiple cities, including Los Ange-
les, Paris, and Shanghai, with a spatial resolution of 0.3 m.

Each image in CrowdAlI has dimensions of 300 x 300 pixels.
The training set contains 280741 images, and the test set
contains 60697 images.

4) UBC Satellite Image Dataset [44]: The UBC Satel-
lite Image Dataset (hereinafter referred to as UBC) is from
Beijing, China, and Munich, Germany, and the spatial reso-
lution is 0.5-0.8 m. Each image in UBC has dimensions of
600 x 600 pixels. The training set contains 560 images, and
the test set contains 160 images.

5) ISPRS Potsdam Dataset [45]: The ISPRS Potsdam
Dataset (hereinafter referred to as Potsdam) contains 38 fine-
resolution images of size 6000 x 6000 pixels. The images are
from Potsdam city in Germany with a spatial resolution is
0.05 m. The training set contains 24 images, and the test
set contains 14 images. The dataset contains six categories,
namely, surfaces, buildings, low vegetation, trees, cars, and
clutter/background. Since only the building category is con-
cerned, we process the annotation file, keep only the building
category, and set other categories as background. Because the
resolution of the original image is too high, we crop the raw
images into 512 x 512 patches.

6) ISPRS Vaihingen Dataset [46]: The ISPRS Vaihingen
Dataset (hereinafter referred to as Vaihingen) is composed
of 33 images with an average size of 2494 x 2064 pixels.
The images come from a small village, including multiple
independent buildings and smaller multistory buildings, with a
spatial resolution of 0.09 m. The dataset category is the same
as Potsdam, so we process the origin image as Potsdam does
and crop the original image to 512 x 512 patches using the
dataset processing method provided by mmsegmentation [49].

7) Massachusetts Building Dataset [47]: The Mas-
sachusetts Building Dataset (hereinafter referred to as Mas-
sachusetts) is captured from Boston, the United States, and the
spatial resolution is 1 m. The training set contains 137 images,
the val set contains four images, and the test set contains
ten images. Each image in Massachusetts has dimensions of
1500 x 1500 pixels. Since the original image resolution is too
high, we crop the raw image to 500 x 500 patches.

8) Inria Aerial Image Labeling Dataset [48]: Since the
label of the test set is not released, we use the provided
training set for testing. The training set of Inria Aerial Image
Labeling Dataset (hereinafter referred to as Inria) contains 180
images with dimensions of 5000 x 5000 pixels, which are from
Austin, Chicago, Kishap County, West Tyrol, and Vienna, with
a spatial resolution of 0.03 m. We crop the raw images into
500 x 500 patches.
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B. Evaluation Protocol

In order to evaluate the performance of our proposed
method, we employed the widely used intersection over union
(IoU) [50] and F1-score (F1) [51] as the evaluation metrics.
IoU and F1 are defined as

IoU = P (1)
T TPIFPIEN
TP
Precision = ——— 12
recision TP + FP (12)
TP
Recall = —— (13)
TP + FN
Pl 2 x Precision x Recall (14)

Precision + Recall

where TP, FP, and FN indicate the true positive, false positive,
and false negatives, respectively. Note that higher F1 and IoU
denote better overall performance.

C. Implementation Details and Task Settings

The code implementation was based on MMSegmentation
[49]. We utilized Dinov2 [52] as the backbone for feature
extraction and the segmentation head of Mask2Former [39]
to generate pixel-level predictions. During training, we set
the learning rate to le™ and le ™ for the backbone and
segmentation head, respectively. We employed AdamW as the
optimizer with a batch size of 4, and the model was trained for
80000 iterations on a Linux Platform with NVIDIA GeForce
RTX 2080 Ti GPU and NVIDIA GeForce RTX 3090 GPU.
During all training processes, we scaled and resized the input
images to 256 x 256 pixels. We performed the experiments
on three cross-domain scenarios, the definitions of the source
domain and the target domains, as below in the form of
source—targets:

1) Whu—Others: We selected the WHU as the source
domain and selected the other seven datasets (SAB, Crowd,
UBC, Vaihingen, Massachusetts, Potsdam, and Inria) as the
target domains for evaluation.

2) Sab—Others: We selected the SAB as the source
domain and selected the other seven datasets (WHU, Crowd,
UBC, Vaihingen, Massachusetts, Potsdam, and Inria) as the
target domains for evaluation.

3) Crowd—Others: We selected the Crowd as the source
domain and selected the other seven datasets (SAB, WHU,
UBC, Vaihingen, Massachusetts, Potsdam, and Inria) as the
target domains for evaluation.

In the comparative experiment, we employed Rein [36] as
our baseline model, which incorporates a parameter-efficient
fine-tuning strategy to adapt the visual foundation model
(VEM) for domain-generalized semantic segmentation. Rein
employs transformer-based VFM as a backbone and incor-
porates the widely used segmentation head of Mask2former
for pixel-level predictions, along with the basic data aug-
mentations. Besides, Rein introduces learnable tokens to each
transformer layer and computes cross-attention between fea-
tures and tokens, thus associating each token to different
instances in the image to facilitate instance-level feature refine-
ment. Benefiting from the strong generalization capabilities of

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

VEM and an effective fine-tuning strategy, Rein significantly
outperforms existing DG methods.

We also selected several state-of-the-art SDG methods pro-
posed in recent years for comparison under the above three
cross-domain settings, including RobustNet [53], MDGVR
[25], MVDG [26], SHADE [54], SiamDoGe [55], Dual-
Level [56], HGFormer [57], DIIA [58], CCDR [6], BlindNet
[59], CMFormer [60], and CPerb [37]. Besides, we followed
the original network structures of these methods to avoid
structural modification biases. RobustNet [53] removes style
information that is sensitive to domain shift from feature
covariance, while retaining domain-invariant content informa-
tion. MDGVR [25] learns domain-invariant patterns through
low-rank regularization imposed on the weights of multiple
trained models. MVDG [26] leverages multiview optimization
trajectories in training and multiview predictions in testing for
more stable predictions. SHADE [54] uses the basis styles
of the source domain to generate samples with novel styles
in the image space, minimizing the JS divergence between
the predictions of the original sample and the generated one.
SiamDoGe [55] diversifies the feature space by mixing the
feature statistics of two color-jittered versions from the same
original sample with AdaIN [38]. Dual-level [56] introduces
a two-stage domain augmentation, the first stage generates
enhanced samples at the image level while the second stage
diversifies per-class features at the feature level. HGFormer
[57] groups pixels into part-level masks and further aggregates
part-level masks into whole-level masks, using two scales to
generate the final prediction results. DITA [58] utilizes domain-
invariant edge and semantic layout information to facilitate
generalization on unseen target domains. CCDR [6] randomly
transforms the texture and style of the RS source image to
generate additional images for domain expansion. BlindNet
[59] incorporates extra loss constraints to ensure the encoder
generates style-invariant features, and employs semantic con-
sistency contrast learning to improve the robustness of the
segmentation prediction against domain shifts. CMFormer [60]
proposes the content-enhanced mask attention for domain-
invariant content representation learning and handling style
variation. CPerb [37] employs multiview augmentation at both
image and feature levels to augment the original single-source
domain.

D. Discussions of Experimental Results

1) WHU— Others: We used the WHU dataset as the source
domain and the SAB, Crowd, UBC, Vaihingen, Massachusetts,
Potsdam, and Inria datasets as target domains to evaluate the
performance of our MASDG and compare it with existing
state-of-the-art SDG methods. The performance results are
shown in Table II. The overall performance of Rein and
our proposed MASDG on seven target domains far exceeded
previous SDG methods, which may be attributed to both Rein
and our MASDG utilizing VFM as a backbone for feature
extraction. Since VFM is pretrained on a large-scale dataset,
it possesses significant feature abstraction and generalization
capabilities. As a result, the VFM-based SDG methods demon-
strate better generalization when applied to unknown RS
target domains. In addition, compared with Rein, our MASDG
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TABLE II
PERFORMANCE COMPARISON BETWEEN THE PROPOSED MASDG (OURS) AND EXISTING SDG METHODS ON WHU—OTHERS
Method SAB Crowd UBC Vaihingen Massachusetts Potsdam Inria AVG
ToU F1 IoU F1 IoU F1 ToU F1 IoU F1 IoU F1 IoU F1 IoU F1
RobustNet [53] 33.11 49.75 4503 62.10 23.09 37.52 47.53 6444 12.67 2250 4753 6444 4653 6351 3650 52.04
MDGVR [25] 20.63 3421 424 5927 2097 3467 39.08 562 13.6 23.94 33.62 50.21 3844 5553 29.82 44.86
MVDG [26] 26.32 41.67 49.13 6589 24.53 394 4936  66.1 1596 27.53 3893 56.04 4188 59.03 35.16 50.81
SHADE [54] 37.37 5441 3951 56.64 1999 3332 51.84 6828 18.66 31.44 5354 69.74 4554 6258 38.06 53.77
SiamDoGe [55] 37.36 5440 50.55 67.16 27.50 43.13 5486 7085 17.28 29.47 4550 6250 4577 6280 39.83 55.76
Dual-Level [56] 3447 5286 44.15 6228 21.69 3570 50.14 6562 1644 2666 4370 60.85 43.86 59.99 36.35 51.99
HGFormer [57] 30.18 4636 4659 63.56 12.68 2250 52.50 68.85 3291 4953 4557 62.61 5158 68.05 38.86 54.50
DIIA [58] 31.84 48.31 40.17 5732 2553 40.67 41.85 59.00 1491 25.95 49.50 66.22 4287 60.01 3524  51.07
CCDR [6] 3462 5143 5130 67.81 30.17 4635 60.01 7501 14.02 2460 49.58 6629 4323 6036 4042 5598
BlindNet [59] 3404 5079 5222 68.61 30.50 46.75 51.00 6755 1046 1894 50.01 66.68 4583 6286 39.15 54.60
CMFormer [60] 38.72 55.82 42.03 59.19 27.4 43.01  60.65 75.5 40.4 57.23 63.18 7744 5358 69.78 46.56  62.56
CPerb [37] 32.81 4941 4377 60.89 23.14 3758 5436 7043 16.15 2781 5032 6695 44.10 6121 37.81 53.47
Rein (baseline) [36]54.26 70.35 7343 84.64 37.26 5450 80.86 89.34 3394 5192 78.88 88.19 6349 77.67 60.30 73.80
Ours 59.47 7458 79.46 88.55 52.05 6847 84.13 9138 4250 59.65 81.99 90.10 67.49 80.59 66.73 79.04
TABLE III
PERFORMANCE COMPARISON BETWEEN THE PROPOSED MASDG (OURS) AND EXISTING SDG METHODS ON SAB—OTHERS
Method WHU Crowd UBC Vaihingen Massachusetts Potsdam Inria AVG
ToU F1 ToU F1 ToU F1 ToU F1 ToU F1 TIoU F1 ToU F1 ToU F1

RobustNet [53] 5094 6749 5259 6893 60.55 7542 5441 7047  25.04  40.05 57.87 73.31 59.56 74.66 51.57 67.19
MDGVR [25] 36.26 5322  46.06 63.72 4092 5793 475 64.12 1676 2871 4125 58.62 5042 67.04 39.88  56.19
MVDG [26] 37.13 5415 5094 6749 4241 59.56 56.05 71.84 248 39.75 42,62 59.77 58.19 7357 4459  60.88
SHADE [54] 4392 61.03 50.60 6720 56.15 7192 56.15 7192 27.02 4255 5498 7095 58.66 7394 49.64 65.64
SiamDoGe [55] 4398 61.09 50.88 6745 49.74 6643 59.84 74.87 2726 4284 4993 66.60 5122 67.74 4755 63.86
Dual-Level [56] 4570 6273 5295 69.24 50.04 66.70 5325 69.49 2996 4622 5054 67.14 56.08 71.86 48.36 64.77
HGFormer [57] 60.70 7555 5486 70.85 57.00 72.62 51.86 6830 3844 55.54 4821 65.06 6428 7825 53.62 69.45
DIIA [58] 49.56 6627 5347 69.68 60.02 75.02 5931 7446 225 36.74 59.13 7431 5926 7442 51.89 67.27
CCDR [6] 4450 6159 50.84 6741 48.09 6495 64.09 78.12 2842 4426 51.83 6828 50.76 67.34 4836 64.56
BlindNet [59] 52.01 6851 5466 70.69 6542 79.10 6475 78.60 2326 3774 46.66 63.63 57.66 73.14 52.06 67.34
CMFormer [60] 5545 7134 5554 7142 525 68.85 49.08 65.84 3433 5096 51.68 68.14 639 7797 5178 67.79
CPerb [37] 50.04 66.70 51.37 6787 4771 64.60 55.18 71.11 2629 41.63 47.61 6451 5322 6947 4735 63.70
Rein (baseline) [36]62.66 77.05 70.61 8277 5825 73.61 81.18 89.61 35.13 52.00 8354 91.03 68.03 8098 65.63 78.15
Ours 64.70 78.57 7492 85.66 62.02 7656 83.33 9091 35.18 52.05 83.60 91.07 67.66 80.71 67.34 79.36

further relatively improved the average IoU and F1 on seven
target domains by 10.02% and 6.75%, respectively, achieving
state-of-the-art performance on all RS target domains. This
improvement is attributed to the novel multiview augmen-
tation and semantic-invariant learning strategy we proposed,
which effectively increases the texture and style diversity of
RS source domain training data and learn semantic-invariant
building representations that mitigate semantics inconsistency.
As a result, the RSBE model employed VFM as a backbone
can effectively obtain domain-invariant representations from
diverse source domain training data, which further improves
its generalization ability on target domains.

2) SAB—Others: We employed the SAB dataset as the
source domain and the WHU, Crowd, UBC, Vaihingen, Mas-
sachusetts, Potsdam, and Inria datasets as multiple target
domains, to compare our proposed MASDG with existing
state-of-the-art methods. As can be observed from Table III,
our proposed MASDG achieves the best overall performance
on all the target domains. Compared to previous SDG methods
employing ResNet as the backbone, our MASDG improves the
average loU and F'1 by more than 15% and 10%, respectively.
Compared with Rein, that also employing VFM as backbone,
our method further relatively improves the average IoU and F'1
by 2.61% and 1.55%, respectively, on all target domains. It is
proven that the multiview augmentation and SRL strategy can
effectively mitigate the texture and style divergencies between

different RS source and target domains and enforce semantic
consistency, thus leading to improved generalization perfor-
mance across various target domains. However, our proposed
MASDG is slightly inferior to BlindNet and HGFormer on
SAB—UBC and SAB—Massachusetts, respectively. This may
arise from the small and dense buildings contained in these two
target domains, making it difficult for our model to accurately
identify object boundaries during inference.

3) Crowd—Others: We evaluated MASDG on different
RS domains using the Crowd dataset as source domain and
SAB, WHU, UBC, Vaihingen, Massachusetts, Potsdam, and
Inria datasets as target domains. As can be seen from the
performance in Table IV, our proposed MASDG outperforms
other compared methods, obtaining the best average IoU of
64.38% and the best average F1 of 77.19%. Compared with
Rein, which performs best among previous SDG methods, our
method further relatively improves the average IoU and F1 by
3.37% and 2.40%, respectively, on all target domains. This
indicates that our MASDG can effectively address the domain
shift problem between various RS domains, thus generalizing
better to arbitrary unseen target domains.

4) Analysis of Computational Efficiency: To thoroughly
and fairly assess the computational efficiency of our pro-
posed method, we performed comparative experiments on the
WHU—Others setting in terms of trainable parameters and
inference speed under different backbone architectures. As
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TABLE IV
PERFORMANCE COMPARISON BETWEEN THE PROPOSED MASDG (OURS) AND EXISTING SDG METHODS ON CROWD—OTHERS
Method SAB WHU UBC Vaihingen Massachusetts Potsdam Inria AVG
ToU F1 ToU F1 ToU F1 ToU F1 ToU F1 ToU F1 ToU F1 ToU F1

RobustNet [53] 4337 6050 6274 77.10 48.01 64.87 54.67 70.69 2722 42.79 5779 7325 55.11 71.06 49.84 65.75
MDGVR [25] 34.03 50.78 4758 6448 3781 5496 5183 67.66 2198 3444 46.11 63.12 49.83 66.51 4131 5742
MVDG [26] 42.06 59.22 5047 67.09 4337 605 59.03 7424 2434 39.16 52.13 6853 5153 68.01 46.13 62.39
SHADE [54] 39.29 5642 46.01 63.02 3497 51.81 4831 6499 1494 2600 3513 5199 4123 5839 37.13 53.23
SiamDoGe [55] 4447 6156 4895 6573 4625 63.25 5239 6876 29.01 4498 5842 7375 50.11 66.76 47.09 63.54
Dual-Level [56]  41.17 5832 46.63 63.60 4044 57.60 58.84 7409 2740 43.02 56.17 7193 46.17 63.18 4526 61.68
HGFormer [57] 38.78 55.890 6545 79.12 4340 77.84 5588 71.10 36.81 53.81 56.51 7221 54.06 70.18 50.13 68.59
DIIA [58] 445 6159 58.63 7392 4978 6647 54.88 70.87 27.89 4362 57.83 7328 55.16 71.1  49.81 6584
CCDR [6] 39.69 56.82 5040 67.02 3852 55.62 5879 74.05 2652 4192 4941 66.14 4771 6460 4443 60.88
BlindNet [59] 4149 5865 5537 7128 4579 6281 59.06 7426 1894 31.85 6123 7596 5223 68.62 47773 63.35
CMFormer [60] 4045 576 6581 7938 40.17 5731 5323 6947 3467 5149 6201 7655 4721 64.14 49.08 65.13
CPerb [37] 42.04 5920 57.63 73.12 4140 5856 5448 70.53 28.81 44.73 56.65 7232 49.65 6636 4724  63.55
Rein (baseline) [36]54.61  70.64 69.57 82.05 52.84 69.14 79.36 88.49 3131 47.69 8322 90.84 65.04 7882 6228 75.38
Ours 57.10 72.69 6890 81.59 56.24 7199 82.69 90.52 3579 52.72 8381 91.19 66.15 79.63 6438 77.19

TABLE V the average F1 by 5.50%. Adding the SDA module alone

COMPUTATIONAL EFFICIENCY COMPARISON OF DIFFERENT
METHODS ON WHU—OTHERS

Methods Backbone Params Inference Average
™) | speed(s) | IoU 1
RobustNet [53] ResNet50 45.068 0.0125 36.50
MDGVR [25] ResNet50 39.045 0.0249 29.82
MVDG [26] ResNet50 40.224 0.5461 35.16
SHADE [54] ResNet50 45.068 0.0110 38.06
SiamDoGe [55] ResNet50 40.224 0.0094 39.83
Dual-level [56] ResNet50 47.117 0.0122 36.35
DIIA [58] ResNet50 51.698 0.0381 35.24
CCDR [6] ResNet50 39.238 0.0097 40.42
BlindNet [59] ResNet50 50.092 0.0095 39.15
CPerb [37] ResNet50 40.224 0.0361 37.81
Ours ResNet50 22.09 0.0087 46.85
HGFormer [57] Swin-T 51.572 0.0996 38.86
CMFormer [60] Swin-T 48.291 0.0849 46.56
Ours Swin-T 23.59 0.0186 50.41
Rein (baseline) [36] DINOv2 23.590 0.0334 60.30
Ours DINOv2 23.590 0.0333 66.73

presented in Table V, our proposed method inherently achieves
the fewest trainable parameters by utilizing a frozen backbone,
which can be well-adapted to low-computing-power scenarios
(e.g., edge devices or lightweight GPUs) that are common
in real-world applications. For inference speed, we quantified
the time taken by each method to process a single image.
Table V shows our method consistently achieves comparable
or better inference speeds than existing approaches across var-
ious backbone configurations. More importantly, our method
delivers superior generalization performance in all backbone
setups. Overall, our method not only excels in generalization
capability but also maintains competitive efficiency across
different backbone architectures.

E. Ablation Studies and Discussions

1) Effect of Different Components: In order to evaluate the
effect of each component in our MASDG, we progressively
added TDA, SDA, and SRL to the baseline Rein framework on
the WHU—Others setting, the results are shown in Table VI.
Based on the baseline, adding the TDA module alone relatively
increases the average IoU on all target domains by 8.36% and

relatively increases the average IoU on all target domains
by 1.51% and the average F1 by 1.65%. The integration of
TDA and SDA attains relative performance gains of 9.87% in
average IoU and 6.56% in average F'1 on all target domains,
demonstrating the complementary of multiview texture-style
augmentation by tackling both texture-level and style-level
domain shift between different RS domains, overcoming the
limitations of the ones that solely focus on one aspect, thereby
effectively mitigating the limited diversity of a single-source
domain. Finally, the further addition of SRL lead to a relative
performance improvement of 10.67% in average IoU and
7.10% in average F1, which proves the advantage of the
SRL strategy in preserving semantic consistency, thus more
effectively leveraging the diverse source domain training data
obtained by TDA and SDA for robust building extraction.

2) Effect of Different Texture Augmentation Methods: To
verify the effect of different texture augmentation methods
used in TDA, Table VII shows the performance results of
using three different texture augmentation methods under
the WHU—Others setting. Our proposed TDA, RandConv
[12], and Pro-RandConv [61] all use random convolution
to transform the texture of the source input image. The
difference lies in the parameter setting of random convolu-
tion. RandConv uses a single layer of random convolution
with a kernel size is randomly selected. Pro-RandConv uses
multiple layers of random convolution with the same weights,
and the size of the convolution kernel and the number of
convolution layers are randomly selected. Our proposed TDA
uses parameter-optimized multilayer random convolution for
texture augmentation. The key texture transformation param-
eters are not random, but from a well-designed parameter
optimization strategy, which diversifies the combination of
texture transformation parameters, thereby increasing the tex-
ture diversity of the RS source domain. As can be seen from
Table VII, our method outperforms the other two texture aug-
mentation methods, showing the highest texture diversity of
images generated by TDA and the most superior generalization
performance across multiple RS target domains.

3) Effect of Different Style Transformation Strategies in
SDA: To investigate the effect of different style transformation
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TABLE VI
EFFECT OF DIFFERENT COMPONENTS ON WHU—OTHERS

Component SAB Crowd UBC Vaihingen Massachusetts Potsdam Inria AVG
Baseline TDA SDA SRL IoU F1 TIoU F1 ToU F1 ToU F1 ToU F1 IoU F1 IoU F1 IoU F1
v 5426 7035 7343 84.64 3726 5450 80.86 8934 3394 5192 7888 88.19 6349 77.67 6030 73.80
v v 59.82 74.86 78.87 88.18 50.68 67.27 8425 9145 3770 5476 79.62 88.66 6645 79.84 6534 77.86
v v 54.56 70.6 76.48  86.67 36.15 53.1 81.4 89.75 3692 5393 80.47 89.18 64.81 78.65 61.54 7455
v v v 5922 7439 7959 88.64 50.80 67.38 8439 91.53 4146 58.61 81.07 89.54 6724 8041 6625 78.64
v v v v 5947 7458 7946 88.55 52.05 6847 84.13 9138 4250 59.65 81.99 90.10 67.49 80.59 66.73 79.04
TABLE VII
EFFECT OF DIFFERENT TEXTURE AUGMENTATION METHODS IN TDA ON WHU—OTHERS
Methods SAB Crowd UBC Vaihingen Massachusetts Potsdam Inria AVG
ToU F1 ToU F1 IoU F1 ToU F1 ToU F1 IoU F1 ToU F1 ToU F1
Baseline 5426 7035 7343 84.64 3726 5450 80.86 89.34 3394 5192 78.88 88.19 6349 77.67 6030 73.80
RandConv [12] 59.71 7477 7797 87.62 49.88 66.56 83.65 91.10 38.63 5573 8193 90.07 6653 7990 6547 77.96
Pro-RandConv [61] 58.12 7352 79.75 88.73 50.86 6742 84.16 9140 36.10 53.04 80.60 89.26 66.80 80.09 6520 77.64
Ours 5947 7458 79.46 88.55 52.05 6847 84.13 91.38 4250 59.65 81.99 90.10 67.49 80.59 66.73 79.04
TABLE VIII
EFFECT OF DIFFERENT STYLE TRANSFORMATION STRATEGIES IN SDA ON WHU—OTHERS
Methods SAB Crowd UBC Vaihingen Massachusetts Potsdam Inria AVG
IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1
Baseline 5426 7035 7343 84.64 3726 5450 80.86 89.34 3394 5192 78.88 88.19 6349 77.67 6030 73.80
MixStyle [62] 59.71 7477 7797 87.62 49.88 66.56 83.65 91.10 38.63 5573 8193 90.07 66.53 7990 6547 77.96
TFS-Token [63] 59.32 7447 7896 88.24 5224 68.62 83.63 91.09 3828 5536 81.50 89.81 66.48 79.86 6577 78.21
Ours 5947 7458 79.46 8855 52.05 6847 84.13 91.38 4250 59.65 8199 90.10 6749 80.59 66.73 79.04
TABLE IX
EFFECT OF DIFFERENT SEMANTIC CONSISTENCY LOSSES IN SRL ON WHU—OTHERS
Losses SAB Crowd UBC Vaihingen Massachusetts Potsdam Inria AVG
ToU F1 ToU F1 IoU F1 ToU F1 ToU F1 IoU F1 ToU F1 ToU F1
Baseline 5426 7035 7343 84.64 3726 5450 80.86 89.34 3394 5192 78.88 88.19 6349 77.67 6030 73.80
L1 [64] 59.03 7424 79.17 8837 50.50 67.11 8450 91.60 3922 5634 82.01 90.12 6698 80.23 6592 78.29
L2 [65] 59.23 7447 79.22 8842 52.02 68.11 84.62 91.59 4095 56.80 80.58 89.84 67.11 80.14 66.25 78.48
Ours 5947 7458 79.46 8855 52.05 6847 84.13 9138 4250 59.65 8199 90.10 67.49 80.59 66.73 79.04

strategies used in SDA for feature stylization, Table VIII shows
the comparative results of three different style transformation
strategies, MixStyle, TFS-Token, and our proposed BST under
the WHU—Others setting. MixStyle [62] swaps the feature
statistics of samples in the same batch to generate intermediate
features with new styles. The style transfer mechanism of
TFS-Token [63] is similar to MixStyle, but TFS-Token retains
some of the original features. In the experimental setting, we
constrained the feature layers for the style transfer of MixStyle
and BST kept consistent. Since TFS-Token needs to randomly
specify the feature layers used for style transfer, we guarantee
that the number of layers used for style transfer in TFS-Token
is consistent with MixStyle and BST. As can be observed
from Table VIII, the BST used in our MASDG achieves
the best performance, showing that our BST can effectively
diversify the style of features by modeling the feature statistics
as uncertain variables sampled from multivariate Gaussian
distributions, thus effectively mitigating the uncertain style-
level domain shift between different RS domains.

4) Effect of Different Semantic Consistency Loss Func-
tions in SRL: To evaluate the effect of different semantic

consistency loss functions used in SRL for semantic alignment
of multiview predictions, Table IX shows the impact of using
three different semantic consistency loss functions in our
SRL on the model performance under the WHU—Others
setting. We conducted experiments using three commonly used
loss functions for similarity measurement, Manhattan distance
(L1) [64], Euclidean distance (L2) [65], and JS divergence
(JS) [40] used in our MASDG. Among the three different
semantic consistency loss functions, the model obtains the
best performance using JS divergence, which indicates that
the JS divergence used in our SRL can effectively regularize
the discrepancy among multiview predictions and mitigate
semantic inconsistency.

5) Effect of the Key Parameters in TDA: To evaluate the
effect of key parameters in TDA, we adjusted different values
for the queue length len of Q. O, and Q,, along with the
upper bound Myppe; of the number of random convolution
layers M on the model performance and provided the results
in Figs. 4 and 5, respectively. Fig. 4(a) and (b) shows the
average IoU and average F'1 of the model on all target domains
by varying len under the WHU—Others setting. As the len
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TABLE X
GENERALIZATION COMPARISONS WITH STATE-OF-THE-ART BUILDING EXTRACTION METHODS ON WHU—OTHERS
Methods SAB Crowd UBC Vaihingen Massachusetts Potsdam Inria AVG
IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

UANet [66] 17.75 30.15 41.54 5870 13.09 23.14 30.54 46.79 2194 3598 3872 55.83 49.02 65.79 30.37 45.20
LWGANet [67] 3556 5246 3294 4955 2.46 4.80 26.23 4156 28.85 4478 35.19 52,06 5299 69.27 30.60 4493
Ours 5947 7458 7946 88.55 52.05 6847 8413 9138 4250 59.65 8199 90.10 6749 80.59 66.73 79.04
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Fig. 4. Model performance with the change of queue length len in TDA.
(a) Average IoU across all target domains. (b) Average F1 across all target
domains.
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Fig. 5. Model performance with the change of Mypper in TDA, which is the
upper bound of the number of random convolution layers. (a) Average IoU
across all target domains. (b) Average F1 across all target domains.

increases, both IoU and F1 exhibit an increasing trend, and
then achieve a fairly stable once the len exceeds 512. This
is because when len is too small, it will lead to incomplete
parameter space exploration, resulting in limited texture diver-
sity of generated images. Similarly, Fig. 5(a) and (b) presents
the average IoU and average F1 of the model across all
target domains, respectively, under the WHU—Others setting
as Mypper is changed. The result indicates that, as the Mypper
increases, the overall generalization performance will initially
increase and then subsequently decrease. This is because too
small M,y leads to limited texture diversity of texture-
augmented images and too large M,,,., may yield excessive
M that impairs image semantics when performing random
convolution. Therefore, we set len as 512 and M,,,,., as 10
for obtaining the optimal performance.

6) Effect of the Weighting Factor w of Lcons in SRL: In
order to assess the effect of the weighting factor w of Lons
in SRL on the performance [see (10)], we experimented with
different values and analyzed the results. Fig. 6(a) and (b)
shows the average IoU and average F1 of the model on
all target domains by varying the value of w under the
WHU—Others setting. We can observe when w is too small,
the model cannot efficiently deal with semantic disparity
between different RS domains, leading to poor performance.
In contrast, when w is too large, it will lead to insufficient

(a) (b)

Fig. 6. Model performance with the change of the weight factor w of Lcons
in SRL. (a) Average IoU across all target domains. (b) Average F1 across all
target domains.

domain-invariant representation learning, also resulting in poor
performance. Therefore, we set the w as 1.0 since it reaches
the performance peak as shown in Fig. 6.

F. Generalization Comparison With State-of-the-Art Building
Extraction Methods

To compare the generalization performance of our pro-
posed MASDG and current state-of-the-art building extraction
methods on unseen target domains, we selected the latest open-
source building extraction methods, including UANet [66]
and LWGANet [67] for generalization comparison under the
WHU—Others cross-domain setting. The results are presented
in Table X. Despite high testing performance on the source
domain, UANet and LWGANet show poor generalization per-
formance when directly testing on unseen target domains. This
is due to the domain shift caused by the difference of imaging
mechanisms, sensors, environments, and location between the
source and target domains. In contrast, our proposed method
demonstrates superior performance in handling domain shift
compared to these current state-of-the-art building extraction
methods, which is attribute to the design of multiview augmen-
tation and semantic-invariant learning that effectively mitigates
the domain shift, showing strong adaptability and robustness
in more realistic cross-domain scenarios that domain shift is
inevitable.

G. Visual Experimental Results and Discussions

1) Visualization Results on the WHU— Others: We com-
pared the building segmentation results of our MASDG and
other SDG methods on the WHU—Others setting, as shown
in Fig. 7, where white represented the building and black
represented the background. Since the WHU dataset is col-
lected from a single region with low spatial resolution, the
buildings are characterized by high density, small scale, and
high similarity, resulting in an obvious domain shift from
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Fig. 7. Visualization results of different SDG methods under WHU—Others. The first column represents the testing images from various target domains, the
second column indicates the GT, and the rest columns show the predictions obtained by different SDG methods and our proposed MASDG, respectively. We
use boxes to mark areas with significant differences between different methods, where the blue boxes indicate the GT, the yellow boxes point out regions
where previous SDG methods have missed detections or false detections, and the green boxes highlight the superiority of our proposed MASDG in more
accurately identifying buildings.

SlamDnGe Dual-Level HGFormer DA CPerb Rein Ours
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Images GT RobustNet MDGVR MVDG CCDR BlindNet CMFormer

Fig. 8. Visualization results of different SDG methods under SAB—Others. The first column represents the testing images from various target domains, the
second column indicates the GT, and the rest columns show the predictions obtained by different SDG methods and our proposed MASDG, respectively. We
use boxes to mark areas with significant differences between different methods, where the blue boxes indicate the GT, the yellow boxes point out regions
where previous SDG methods have missed detections or false detections, and the green boxes highlight the superiority of our proposed MASDG in more

accurately identifying buildings.

other RS domains. The comparison methods are far from
satisfactory and cannot effectively distinguish between build-
ing and background (see the 3rd~14th columns of Fig. 7).
This is primarily because they only address either texture- or
style-level domain shift, failing to effectively and comprehen-
sively tackle the domain shift between different RS domains.
Especially for the UBC domain (see the 3rd row of Fig. 7),
these methods exhibit significant missed detections due to
the structural, stylistic, and scaling differences between WHU
and UBC.

In contrast, the segmentation results of Rein have been
greatly improved. This is because Rein benefits from the

generalization ability of pretrained VFMs for unknown scenes,
and further refines the feature maps at the object-level for
each instance, achieving better segmentation results. However,
compared with our method, Rein still suffers from issues such
as missed building detections, incomplete building segmenta-
tion, and blurred boundaries, as seen at the 15th column of
Fig. 7. Based on Rein, our MASDG introduces the multiview
augmentation and SRL to address both texture- and style-
level RS domain shifts. Therefore, MASDG can generate more
building instances, more complete building masks, and clearer
building boundaries, which closely resembles the GT, see the
16th row of Fig. 7.
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Fig. 9. Comparison of feature distributions using different SDG methods
under SAB—Others. (a) BlindNet. (b) Rein. (¢) Our MASDG. The more
uniform distribution of features across target domains indicates better results.

2) Visualization Results on the SAB—Others: Fig. 8 illus-
trates the comparison between our MASDG and other SDG
methods on the SAB—Others setting. Although previous com-
parison methods can also detect some building instances, the
generated masks often lacked accuracy. They may either fail
to completely encompass the building instances or include
excessive background, see the annotated areas at 3rd~14th
columns of Fig. 8, particularly for the Crowd domain (see
the 2nd row). In contrast, Rein reduces the false detection
rate, however, it still faces issues such as incomplete masks
for building instances and missed detections, see the 15th
column of Fig. 8. Our MASDG can effectively distinguish
buildings from their surrounding backgrounds, reduce the
missed detections, and generate complete segmentation masks
with clear boundaries.

3) Feature Distribution Visualization: To analyze the gen-
eralization performance of different SDG methods on target
domains, Fig. 9(a)-(c) compared the feature distributions
extracted by BlindNet, Rein, and our proposed MASDG
method under the SAB—Others setting. As shown in Fig. 9,
the feature distribution generated by our proposed MASDG
for various unseen RS target domains is more uniform, espe-
cially within the annotated regions. Notably, the features of
the Crowd and UBC datasets extracted by BlindNet were
dispersed from others, and the features of the UBC and
Vaihingen datasets extracted by Rein were also dispersed
from the rest, whereas our MASDG yielded a more uniform
distribution. This observation highlights the superiority of
MASDG in extracting domain-invariant features, contributing
to its superior generalization performance on unseen RS target
domains.

V. CONCLUSION

In this article, we proposed MASDG, a novel framework
for the challenging MD-RSBE task, which transfers knowl-
edge from a single RS source domain to multiple unlabeled
target domains. MASDG introduces a multiview augmentation
strategy that captures both texture- and style-level domain
shifts, and employs SRL to address inconsistencies across
views. Extensive experiments on three cross-domain RS build-
ing datasets demonstrate that MASDG outperforms existing
SDG methods, achieving state-of-the-art performance. We also
validated the contributions of each component and visual-
ized segmentation and feature distributions. While MASDG
effectively mitigates domain shifts, its performance drops
with extremely small-scale objects. Future work will explore

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

multiscale feature enhancement and prompt-based strategies
with pretrained large models to further improve model-level
generalization.
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